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LETTER TO THE EDITOR 

Magnetic properties of the one-dimensional supersymmetric 
t-J model 

M Quaissert, A Schadschneidert and J Zittartzs 
lnstitut fur Theoretische Physik, Universitit zu Koln, Ziilpicher Sir 77, DW-50o0 Koln 41, 
Federal Republic of Germany 

Received 21 July 1992 

Abstract. Starting with the known exaa  solution of the one-dimensional supersymmetric 
I-I model, we investigate ground-state properties of the system in the presence of an 
extemal magnetic field. By analytical calculations we find a representation of the magnetiz- 
ation curves and the susceptibility using the dressed charge matrix and the charge and 
spin densities; the dressed properties are given by a set of coupled integral equations which 
are derived from the Bethe ansat2 equations in the thermodynamic limit. Some special 
results are found analytically, namely the magnetic field a t  which saturation occurs and 
the corresponding susceptibility. Furthermore we show the vanishing of the lower critical 
field. The dependence of magnetization and susceptibility on the magnetic field is calculated 
numerically for various particle densities. 

According to Anderson [l], the 1-J model [Z, 31 is supposed to incorporate in a very 
simple form the essential elements responsible for high T, superconductivity. The 
model consists of a kinetic term describing next-neighbour hopping of electrons with 
transfer energy f and a potential term describing a spin exchange interaction of strength 
J also between next-neighbour sites. 

In the following, we present the results of our investigations of the model in one 
dimension in an external magnetic field. As its supersymmetric points 21 = *J,  the 
model is exactly solvable using the Bethe ansatz technique. We examine the case 2f = J 
which represents a strong antiferromagnetic exchange interaction. 

Consider a linear chain of L sites which is occupied by N c L electrons, such that 
NI (N,) is the number of up (down) spins. Double occupation of the sites is excluded, 
thus simulating an infinite on-site Coulomb repulsion, and periodic boundary condi- 
tions are imposed. The Hamiltonian of the system in an extemal magnetic field H is 

where the operators CL and c, create and annihilate an electron on site i with spin 
U. nj is the particle number (which equals zero or one) and si the spin at site i. The 
projector 9 ensures the exclusion of doubly occupied sites. 

t E-mail: mq@thp.uni-koeln.DE. 
$ E-mail: as@thp.uni-koeln.DE. 
P E-mail: zitt@thp.uni-koeln.DE. 
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For J = 2 t  the model is solved by Bethe ansatz [2, 3,4]. The energy eigenstates are 
given by a Bethe ansatz wavefunction with N different wavenumbers k, which in the 
following are parametrized by the moments U, = f  cot(kJ2). In the thermodynamic 
limit, with N + w while n l =  NJ/ L = constant, the ground state without magnetic field 
is characterized by a set of N I 2  pairs of complex wavenumbers k: which describe 
singlet pairs in k-space. The corresponding moments U’ form so-called 2-strings [4,5], 

(2) ..*- L I:,- ”= - n= -‘, L 

where the N I 2  spin rapidities A- are real numbers. The zero-field ground state has no 
magnetization. Applying a magnetic field H to the system creates a number of N - ~ N J  
unpaired spin-up electrons which leads to a non-vanishing total magnetization S = 
(N+ - N1)/2 of the system. In contrast to the complex moments of the singlet pairs, 
the moments U, of the unpaired spin-up electrons are real numbers. The two sets of 
moments are determined from the Bethe ansatz equations [4] 

with j =  1,. . . , N - 2 N ,  and LI = 1,. . . , NJ. The total energy of the system, E = 
-2t X,”=, cos 4 - HS, can be expressed by 

- - - ( N -  E N - 2 N L  1 7- 2 N 1  - ) - - ( N - 2 N L )  1 h 
2t j= l  4u;+l , , ,A;+l  2 

where h is given in units of if, i.e. ii =iih. We noiice ihai the fieici h iiifrueiices ihe 
energy in two ways. One contribution is the Zeeman energy proportional to the field, 
but the field also changes the distribution of the moments. In the thermodynamic limit, 
equations (3). (4) become a set of two coupled Fredholm integral equations for the 
continuous distribution functions of the moments U and A which lie densely on the 
real axis: 

1 1  1 1 
pl(u)=---- pz(A’) 

2 m  v2+1/4 2 ~ J [ ~ , ( u - A ’ ) ~ + 1 / 4  

with the shorthand notation rQ1= (-w, -Q) U (Q,  w), and [ E ]  correspondingly. The 
two integral boundaries Q and B parametrize the electron and magnetization densities 
n = N / L  and s = S / L  via the normalization equations: 

pl(u) d u =  n -2n ,  =2s  

The above equations define implicit functions n(Q,  E )  and s(Q,  E )  with Q and B 
being in the interval ( 0 , ~ ) .  
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We now derive equationst describing the magnetic field h( Q, B )  and the susceptibil- 
ity x(Q,  B )  which, together with (8),  (9),  yield an implicit representation of the 
magnetization curves s ( h ;  n) and the susceptibility x ( h ;  n ) ,  parametrized by 0 and 
B. The procedure has been developed and applied to the attractive Hubbard model 
in [ 8 ]  which work we shall follow closely in the following. 

The structure of equations (6), (7) can be emphasized by writing them in vector 
notation with 

where K denotes the 2 x 2-matrix consisting of the integral kernels and the product 0 
stands for matrix multiplication and integration of the variables U’ and A’ within the 
ranges [ Q ]  and [B], respectively. The vector po(u, A )  denotes the inhomogeneous parts 
of the integral equations. Analogous equations hold for the dressed energy E (  U, A )  and 
the dressed charge matrix =(U, A). These quantities are defined by the appropriate 
inhomogeneous terms, i.e. the bare energy 

and the bare charge matrix e, is just the 2 x 2 unit matrix. Denoting the columns of 
2: by 6”’ and 6(2’ and introducing the vector 5=C‘l ’+2f‘2’ ,  the energy density 
e =  E/21L (cf (5))  as well as n and s (equations (8), (9)) can he written as 

e = p : @ E  (12) 

n = pT@J (13) 

(14) 

In order to find an expression h( 0, B) for the field, one has to minimize the energy 

1 
2 

s =- p;Q&”. 

with respect to the magnetization (h and n being fixed): 

This differentiation can be performed via differentiating equation (12) with respect to 
Q a d  E. I t  shou!d he poi”‘Pd 0:: :!I*: zzy mmpzent nf ?he dressed qg~fititico is E 
function of Q and B because it is defined by a system of coupled integral equations 
containing Q and B as limits of integration. Differentiation finally leads to the equation 

taking into account the relation 

h 
2 .rrP & = -6 _- f ‘ l )  + 

7 A more detailed description can be found in [a] and will be published elsewhere [71. 
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which holds for the f - J  model. Equation (16) specifies the magnetic field h which 
causes the magnetization s. As one notices, for explicit calculations the dressed values 
must be evaluated at the pseudo Fermi surfaces, i.e. at the points U = Q and A = B .  
The magnetic susceptibility ,y = ( J S / J ~ ) ~ .  can be derived similarly as 

The vector p denotes the 'dressed derivative' of p, i.e. it is determined by integral 
equations corresponding to (10) where the inhomogeneous terms are replaced by the 
derivatives of po with respect to U and A. We mention that the chemical potential 
p =  (Je /Jn) l ,  can be calculated in the same way resulting (in units of Zt)  in 

For general values of Q and B, the dressed properties must be calculated numeri- 
cally; to perform this work we used the equivalent Sutherland representation [3,5] of 
the Bethe ansatz equations which is favourable for the numerical treatment. In the 
following, we deal with special choices of Q or B which can be treated analytically. 

The case of magnetic saturation corresponds to B =W.  All spins are pointing into 
the direction of the external field so that the magnetization yields s = n / 2 .  The integral 
equations of type ( 6 ) ,  (7) can be solved in closed form as in this case the first components 
of the dressed quantities are identical to the bare quantities. The particle density n 
turns out to be related to the parameter Q by n ( Q )  = (2/7r) cotC'(2Q). Finally one can 
determine the field h, at which saturation occurs: 

h , ( n )  = 2 sin2(?). 

This is a new exact result which is identical to the limit U+O of the corresponding 
field of the Hubbard model [S-IO]. It is remarkable that the saturation field h, is the 
same as for free electrons, i.e. for J = O  and no projection 9 in (1). The susceptibility 
and chemical potential at saturation can also be calculated. They are given by 

p.(n)= -cos2(yj 

which are again the free-electron values. 
The case Q = m corresponds to  the onset of magnetization, s = 0, and the connected 

integral equations can be solved using the Wiener-Hopf method. By that, the vanishing 
of the lower critical field h, can be proved for arbitrary density n (which now depends 
only on E ) .  It can be shown that h(Q, B)ae-"' as Q-fm. 

Figures 1 and 2 give a graphical representation of s/n and x / n  plotted against h 
for various fixed densities. All these numerically determined curves end at the analyti- 
cally found saturation points which in the plots are marked by dots. In the case n = 1 
we recover the results for the antiferromagnetic Heisenberg model [IO]. 

A5 can be recognized, the magnetization values of the t-J model for fields close 
to zero or close to the saturation field hardly differ from the values obtained for free 
fermions. For small densities, the model furnishes only a small correction to free 
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Figure 1. Magnetization curves of the 1-3 model for various densities n. 
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Figure 2. The susceptibility of the I -J  model for various densities n. 

fermions even in the whole range of h E (0, h J .  For n GO.4, the difference is less than 
1% for all fields despite the large exchange energy. One may speculate that this 
behaviour is related to charge-spin separation [ 1 I]. We suppose the free fermion 
behaviour to vanish as soon as elementary excitations from the ground state are 
considered. 

This work was performed within the research program of the Sonderforschungsbereich 
341, Koln-Aachen-Jiilich. 
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